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Abstract
The title topics are investigated, discussed, and new insights provided by
considering isothermal frequency response data for seven different materials
having quite different conductivity spans and involving different electrode
polarization effects and temperatures. These data sets were fitted using
several different models, including the Kohlrausch-related K0 and K1 ones
derived from stretched-exponential response in the temporal domain. The
quasi-universal UN model, the K1 with its shape parameter, β1, fixed at
1/3, fitted most of the data very well, and its fits of such data were used
to compare its predictions for hopping rate with those derived from fitting
with the conventional ‘universal dynamic response’ Almond–West real-part-
of-conductivity model. The K1-model theoretical hopping rate, involving
the mean waiting time for a hop and derived from microscopic stochastic
analysis, was roughly twice as large as the empirical Almond–West rate for
most of the materials considered and should be used in place of it. Its use
in a generalized Nernst–Einstein equation led to comparison of estimates of
the concentration of fully dissociated mobile charge carriers in superionic
PbSnF4 with earlier estimates of Ahmad using an Almond–West hopping rate
value. Agreement with an independent structure-derived value was relatively
poor. Fitting results obtained using the K0 model, for Na2SO4 data sets for
two different polycrystalline material phases, and involving severely limited
conductivity variation, were far superior to those obtained using the K1 model.
The estimated values of the K0 shape parameter, β0, were close to 1/3 for both
phases, strongly suggesting that the charge motion was one dimensional for
each phase, even though they involved different crystalline structures.
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1. Background

Fitting and analysis of dispersive frequency response data are essential in establishing valid
identifications and interpretation of the physical processes associated with such data. But the
use of physically inappropriate and improper data fitting models, even when they fit the data
adequately, can yield misleading conclusions, and the damage is compounded when the users
of such models are unaware of their deficiencies, frequently the case. Therefore, in recent
years much effort has been devoted by one of the present authors (JRM) to evaluating and
critiquing several popular models proposed to represent the dispersed frequency response of
ionic conductors, especially thermally activated ones.

In particular, the following models have been considered, problems identified, and superior
approaches or corrections discussed in the references cited.

(a) The 1973 original widely used modulus formalism (OMF) fitting model of Moynihan and
associates [1–3]. Although it is inappropriate, it is still used. See the discussion in section 2
of its use of the K1 model.

(b) The 1979 Ngai coupling model and its superior alternative, the cut-off model [2, 4]. The
cut-off model can lead to the usual activation-energy relation of the coupling model but it
is physically much more plausible than is the latter [2].

(c) The Funke mismatch and relaxation model [5, 6]. It involves forward and backward
hopping.

(d) Power-law models: universal dynamic response, the ZC model, and the Almond–West
(AW) model [7, 8].

(e) Series and parallel model additions: nearly constant loss (NCL) and electrode polarization
effects [3, 9, 10].

It is important to distinguish between models appropriate for dielectric situations,
where the dipolar dielectric response, εD(ω), is distributed and involves a distribution of
dielectric relaxation times, and conductive-system ones, where the resistivity, ρ(ω), involves
a distribution of resistivity relaxation times. For example, the use of the Cole–Cole response
function [11] at the dielectric level leads to dispersed dielectric response while its use as a
model at the impedance level, then called the ZC or ZARC model, yields dispersed conductive-
system response [8]. Clearly, just transforming Cole–Cole response from the dielectric level to
the resistivity level is not equivalent to ZC response and vice versa.

The analyses listed above and the present work deal primarily with conductive-system
dispersion situations. In discussing the subjects of the title, we will deal particularly with the
K1 and K0 models, derived from stretched-exponential behaviour in the temporal domain; with
the power-law models listed in (d) above; and with composite fitting models that include both
a dispersive bulk response model and an additional model electrically in series or parallel with
it, as mentioned in (e). It will be shown that, contrary to earlier assumptions, a theoretically
well based estimate of the mean hopping rate of ions can be identified, and its values will be
compared, for a wide variety of data, with those following from the empirical Almond–West
approach for estimating such rates.

2. Data, models, and fits

Figure 1 shows σ ′(ω) responses for seven different materials, identified and referenced in
table 1. These results are consistent with the usual finding that the conductivity range of
such data, expressed in decades and defined as Dσ ≡ log10(σ

′
max/σ0) or just log10(σ

′/σ0),
rarely exceeds three decades except in exceptional cases such as that presented in [19]. Here
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Figure 1. Log–log plots of experimental σ ′(ω) frequency responses for seven different materials,
identified in table 1. Here the normalization quantity ωn is 1 r s−1 and σn is 1 S cm−1.

σ0 ≡ σ ′(0) = 1/ρ0. Fitting and parameter estimate results for the eight data sets of figure 1
are listed in table 1, where only a few fits of the full complex data are included. The fitting
models used are described below. By restricting attention to fitting of only the real part of the
data expressed at the complex conductivity level, σ ′(ω), the effects of the high-frequency-
limiting bulk dielectric constant of the material, εD∞ ≡ ε′

D(∞), do not appear and there
is then no difference between fits using the erroneous OMF approach [12] and its corrected
version [1–3, 20].

The fitting models employed to obtain the results shown in table 1 are, in order of
increasing complexity:

• The series constant phase element, SCPE, called S here,

σSC(ω) ≡ εV ASC(iω)γsc, with 0 < γSC � 2. (1)

• The series SCp, defined as the SCPE and a dielectric constant εp representing a capacitance
in parallel with it,

σSCp(ω) ≡ σSC(ω) + iωεVεp. (2)

• The Almond–West model,

σAW = σ ′
AW ≡ σ0[1 + (ωτAW)n] ≡ σ0[1 + (ω/ωAW)n]. (3)

• The ZC model,

σZC ≡ σ0[1 + (iωτZC)n]. (4)

• Models derived from stretched-exponential response in the temporal domain: the K0, K1,
and UN ones [1–3, 20] involve the shape parameters β0, β1, and β1 = 1/3 which satisfy
the conditions 0 < βk � 1, where k = 0 or 1. The UN model is just a simplification
of the K1, one with the value of β1 fixed at 1/3 and marked 1/3 F in the table. The
characteristic relaxation times of the K0 and K1 models are denoted as τCk , where the
subscript C indicates conductive-system response.
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Table 1. Fit results for the seven different materials of figure 1. All fits are of σ ′(ω) data sets
except the CUNS, CK1S, and CK0S ones, which are fits of the full σ(ω) data. 100SF is the per cent
relative standard deviation of the residuals of a fit. Brackets [ ], are used to distinguish different
situations, and braces { }, designate very poorly determined results. In Kk, 〈τ 〉 and βk , k = 0 or 1.
Dσ is the number of decades from σ0 ≡ 1/ρ0 to σ ′

max. Here, 〈τ 〉 is 〈τ 〉01 for the K1 and UN models
or 〈τ 〉0 for the KO one; τC is either τZC or τAW; and rR ≡ τC/〈τ 〉01, with its value in parentheses
when K1 rather than UN values of 〈τ 〉01 are used.

T ρ0 〈τ 〉 βk

# Material (ref.); Dσ (K) Model 100SF (	 cm) [τC] (s) [n] rR

1 Li2O·Al2O3·2SiO2 [12] 2.3; 297 CUNS 2.36 1.088 × 109 2.610 × 10−4 1/3 F
UNS 2.58 1.095 × 109 2.744 × 10−4 1/3 F
K1S 2.63 1.094 × 109 2.847 × 10−4 0.337
ZCS 1.82 1.148 × 109 [1.105 × 10−3] [0.640]
AWS 1.83 1.147 × 109 [4.161 × 10−4] [0.640] 1.52

2 CsPO3 [13]; 3.3 298 UNSCp 4.08 2.925 × 109 3.252 × 10−4 1/3 F
ZCSCp 3.95 3.177 × 109 [1.480 × 10−3] [0.611]
AWSCp 3.97 3.284 × 109 [6.470 × 10−4] [0.613] 1.99

3 0.4AgI·0.6(0.5Ag2O3·0.5MoO3) [14]; 1.4 143 UNS 2.70 1.056 × 107 5.355 × 10−6 1/3 F
ZCS 2.89 1.151 × 107 [2.458 × 10−5] [0.650]
AWS 2.82 1.212 × 107 [1.005 × 10−5] [0.650] 1.88

4 0.88ZrO2·0.12Y2O3 [15]; 1.6 (single crystal) 503 UNS 0.74 5.793 × 107 3.047 × 10−5 1/3 F
K0S 0.86 5.484 × 107 1.927 × 10−4 0.553
ZC 1.64 6.240 × 107 [1.380 × 10−4] [0.619]
AW 1.64 6.240 × 107 [5.457 × 10−5] [0.619] 1.79

5 0.5Li·0.5La·TiO3 [16]; 2.3 225 UNS 0.86 1.811 × 105 2.604 × 10−7 1/3 F
ZCS 1.01 2.096 × 105 [1.411 × 10−6] [0.596]
AWS 0.93 2.260 × 105 [7.265 × 10−7] [0.583] 2.79

6 PbSnF4 [17]; 0.68 262 UNS 1.36 3.345 × 104 1.577 × 10−7 1/3 F
K1S 1.30 3.327 × 104 [2.541 × 10−7] 0.387
K0S 1.31 3.317 × 104 [1.173 × 10−6] 0.538
ZCS 1.78 3.467 × 104 [6.857 × 10−7] [0.661]
AWS 1.73 3.497 × 104 [2.518 × 10−7] [0.657] (0.99)

7 Na2SO4 [18]; 0.12 540 CK1S 1.16 5.190 × 104 {5.8 × 10−10} 0.173
K1S 0.34 5.173 × 104 {4.8 × 10−10} 0.169
CK0S 1.13 5.186 × 104 1.75 × 10−7 0.333
K0S 0.21 5.191 × 104 1.99 × 10−7 0.322
ZCS 0.32 5.245 × 104 [6.359 × 10−8] [0.691]
AWS 0.32 5.249 × 104 [2.110 × 10−8] [0.691]

8 Na2SO4 [18]; 0.68 461 CK0S 1.86 3.987 × 106 4.71 × 10−5 0.336
K0S 1.07 4.123 × 106 7.57 × 10−5 0.316
K0 2.00 4.110 × 106 7.47 × 10−5 0.318
ZC 2.39 4.606 × 106 [8.89 × 10−6] [0.378]
AW 2.39 4.606 × 106 [5.41 × 10−6] [0.378]

In equations (1) and (2), εV is the permittivity of vacuum. Although Kk models cannot be
expressed in closed form except for the fractional βk values 1/3, 1/2, and 2/3, their frequency
dependences may be very accurately calculated in the range 0.15 � βk � 0.75. Their
responses are instantiated in the freely available, complex-nonlinear-least-squares (CNLS)
fitting, simulation, and inversion program LEVM [21].

In 1973, Moynihan and co-authors published a macroscopic derivation of the K1
model [12], one that invoked a stretched-exponential Kohlrausch temporal response,
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φ(t) = exp[−(t/τC0)
β0]. Some vagaries of this derivation are discussed in [3]. An independent

contemporaneous microscopic continuous-time random-walk-on-a-lattice derivation by Scher
and Lax [22] eventually also led to conductive-system K1 response [6], as explained below.
This fully microscopic model includes both forward and backward hopping.

The Scher–Lax stochastic transport model (STM) involved a general expression for φ(t),
defined as the probability that a mobile charge remains fixed in the interval [0, t]. Although
temporal and frequency responses associated with the choice of some specific choices for φ(t)
were included in this work, the stretched exponential was not one of them. In the Scher–Lax
STM derivation, the mean time for a hop, the mean waiting time, is given by 〈τ 〉 ≡ ∫ ∞

0 φ(t) dt ,
leading, for the K1 model, to the 〈τ 〉01 quantity of equation (5).

The K1 model is particularly important because it is the only response model that has
been derived from both macroscopic and microscopic physical considerations [12, 22]. In
addition, it has been shown, using constraint theory, that for hopping in three dimensions in
microscopically homogeneous materials its β1 shape parameter should have a semi-universal
value of 1/3, independent of temperature and ion concentration [20, 23]. The resulting model
has been termed the UN one and has been found to fit frequency response data for a wide variety
of materials with mobile charges of a single type [1–3, 10]. To avoid the inconsistency of the
inappropriate OMF model [1, 3, 20], however, such fitting generally requires the inclusion of
a free parameter representing the limiting high-frequency bulk dielectric constant εD∞, leading
to the CK1 and CUN composite models.

In order for the Scher–Lax STM model to be identical to the K1 one, its φ(t) must be
a stretched-exponential function. In the 1996–1997 work of [24] and [25], not only were
defects in the OMF pointed out but also synthetic and experimental data sets were fitted with K1
and CK1 models, ones derived from stretched-exponential temporal response. But, as shown
in [6], submitted in 2000, the STM is only fully identical to the K1 when a high-frequency
correction is made to it. Although its response, expressed at the complex dielectric constant
level, involves an expression for ε′′

STM(ω) identical with that for the K1, its ε′
STM(ω) part lacks

the high-frequency-limiting conductive-system effective dielectric constant εC1∞ because the
STM is a low-frequency theory [6]. Nevertheless, it was shown, by means of a distribution of
relaxation times deconvolution approach, that consistency with its ε′′

STM(ω) response required
the addition of εC1∞ to its ε′

STM(ω) part [6]. The extended STM is then isomorphic with the
K1.

In table 1, only UNS fit results are included for those cases where K1S-model fits led to β1

estimates very close to 1/3. The UNS model has been used because of its generality, its strong
theoretical justification, and its ability to fit the data better than alternative models such as the
semi-microscopic mismatch and relaxation model of Funke, itself difficult to use for fitting of
full complex data. Although the ZC model is superior to the AW one because it allows fitting of
complex data, both lead to incorrect low-frequency-limiting σ ′(ω) log–log slopes (termed just
slopes hereafter) when σ0 is subtracted from model response. The provenance of these models
and reasons for their inadequacy are further described in [8].

The C symbol in the composite CK1S, CK0S, and CUNS complex-fit models of table 1
indicates the presence of a specific capacitance, of dielectric constant εx, in parallel with the
bulk model. For the CK1 and CUN models, εx ≡ εD∞, while for the K0 model it denotes
ε∞, the full limiting dielectric constant given by εC1∞ + εD∞. Here εC1∞ is an effective high-
frequency-limiting dielectric constant associated entirely with ionic vibratory motion [2], zero
in the absence of mobile charge. For the K0 model, the equivalent quantity, εC0∞, is zero. In
contrast, in the absence of dipolar dielectric dispersion in the frequency range of interest, εD∞
is the endemic high-frequency-limiting bulk dielectric constant of the material, associated with
multipole response. Failure to distinguish properly between εD∞ and εC1∞ is at the heart of the
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incorrectness of using the K1 OMF electric modulus approach [12], rather than the CK1 one,
for estimating and interpreting β1 from M ′′(ω) modulus-level data. For fitting of σ ′(ω) data,
however, εx may be set to zero or held fixed and there is no difference between K1 and CK1 fit
results at this level.

In figure 1, electrode polarization effects lead to a progressive decrease below σ0 at
sufficiently low frequencies, as is strongly apparent for materials 2, 3, and 6. Although
negligible behaviour of this type appears in the low-frequency region for the single-crystal
material-4 of the table, electrode polarization effects may also affect response in the high-
frequency region [9, 10]. For material-4, their inclusion improved the UNS and K0S fits
appreciably but not the AWS and ZCS fits, so only the AW and ZC results are shown for
this material. Incidentally, when β1 was taken as a free variable in K1S fitting of the material-
4 data, the resulting estimated parameters differed little from those shown for the UNS fit
because the estimated β1 value was about 0.337, very close to 1/3. Note that all the estimated
parameter values for the material-4 ZC and AW fits are the same, except for the τC ones, but
slight differences appear for the corresponding estimates for ZCS and AWS fits. For ZC and
AW fits of the same data, the τAW and τZC quantities are related by τAW = τZC cos(nπ/2).

The K0 model is a direct Fourier transform to the frequency domain of conductive-system
stretched-exponential temporal response. It is calculated numerically in LEVM. Its normalized
form at the resistivity level is I0(ω) = ρC(ω)/ρ0 for the usual situation where ρC(∞) is zero or
negligible. It follows that at the electric modulus level MC0(ω) ≡ iωεVρC(ω) = iωεVρ0 I0(ω),
and, because of a relation between the K0 and K1 distributions of relaxation times [3, 20],
MC1(ω) = iωεVρ0 I1(ω) = [1 − I01(ω)]/εC1∞. Here, I0(ω) involves the K0 shape parameter
β0 while I01(ω) is the same function but with the β1 shape parameter. It follows from K1-model
analysis that

εC1∞ = σ0〈τ 〉01/εV ≡ σ0τC1〈x〉01/εV (5)

where 〈x〉01 = β−1
1 �(β−1

1 ), and � is the Euler gamma function. For β1 = 1/3, 〈x〉01 = 6. For
the K0 model, a similar expression is

εC00 ≡ εC(0) = σ0〈τ 〉0/εV ≡ σ0τC0〈x〉0/εV. (6)

Here 〈x〉0 is the same function as 〈x〉01 but with β1 replaced by β0. Equations (5) and (6) then
lead, for fits of the same data, to

εC1∞/εC00 = (σ01〈τ 〉01)/(σ00〈τ 〉0) ≈ 〈τ 〉01/〈τ 〉0, (7)

since σ01 and σ00 are nearly equal, for good fits.
Because of the wide applicability of the CUN model [20], it is valuable to take it as a

standard for comparing with other fitting models. Therefore, the parameter estimates of a
CUNS CNLS fit of the material-4 data were used to generate virtually exact UN and UNS
σ ′(ω) data sets for a wide radial frequency window extending from 10 r s−1 to 1013 r s−1.
In order to provide normalized K1 results applicable for arbitrary β1 values, however, define
θ1 ≡ ω〈τ 〉01. Figure 2 shows how the logarithm of this quantity varies with Dσ for several
choices. The top UN-model line of figure 2 approaches a limiting slope of 1/(1−β1) = 3/2 as
Dσ increases. In order to estimate the width of a window in the frequency domain needed
for a given value of Dσ , we can write, in the region where the limiting slope is a good
approximation,

ωmax〈τ 〉01
∼= (σ ′

max/σ0)
1/(1−β1), (8)

which allows an approximate value of ωmax to be estimated for a selected Dσ value and one of
τC1〈x〉01, equal to 6τC1 for the UN model. The approximation is quite adequate for Dσ � 2.
Multiplication by (1 −β1) for the β1 values of 1/3 and 1/2 yields lines whose limiting slope is
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subsequent figures, parameter estimates obtained from CUNS fits of the material-4 data identified
in table 1 were employed to generate virtually exact UN and UNS σ ′(ω) data sets for a wide radial
frequency window extending from 10 to 1013 r s−1.
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Figure 3. Slopes and exponents for exact UN-model data, and for K0 and ZC/AW-model fits of the
UN data, versus Dσ . All such quantities, as well as 1 − β1, approach a limiting value of 2/3 at high
frequencies and large Dσ . Also shown are the corresponding table 1 values for fits of the material-4
data.

1, but it is clear that significant differences in the responses for these two values begin to appear
for Dσ < 1.5, so equation (8) should only be used for larger values of Dσ . The vertical dashed
line, for σ ′/σ0 = 2, is reached for the AW model when ωτAW = 1.

3. Slopes, exponents, and range effects

High-frequency limiting slopes of σ ′(ω) are important because they can often shed some light
on which fitting models may be appropriate. Figure 3 shows how the slope of exact UN data,
S1, varies with Dσ and, through figure 2, with the available range of σ ′(ω). Through the use
of the results shown in figure 2 or equation (8), slope values can be related to the normalized
frequency range θ1. The high-frequency-limiting K1-model slope is (1 − β1) and that of the
K0 model is just β0. Thus for β1 = 1/3, the UN model, and for β0 = 2/3, the high-frequency-
limiting values of S0 and S1 are both 2/3.

A comparison of the approaches to 2/3 for the K1 and K0 model slopes as a function of
normalized frequency is presented in [20]. The high-frequency slopes of σ ′(ω) data have been
found, for a wide variety of materials, to be very close to 2/3 (e.g., [20, 26], and the table 1 UN
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fits herein), and CNLS fittings of such data generally show that the UN model yields better fits
than does the K0 or the ZC.

The β0 and n results in figure 3 are estimated values of these quantities, taken as free
variables, obtained from K0 and ZC/AW fits of the present UN data but extending only up
to a given Dσ value. They are thus slope or exponent estimates appropriate for fits of full
but limited-range data. In contrast, the slope values of the S1 curve are local values of the
actual slope of the UN-model response at any point over the full range of Dσ . For example,
S1

∼= 0.600, 0.629, 0.655, 0.663, 0.665, and 0.666 for Dσ = 1.5, 2, 3, 4, 5, and 5.5,
respectively. The two individual β0 and n points shown in figure 3 were calculated from fits of
the material-4 experimental data and, as expected, fall close to the curves based on fits of exact
UN synthetic data.

As Dσ decreases, the fit of the K0 model to the UN-model σ ′(ω) data progressively
improves and its 100SF value is less than 0.64 by Dσ = 0.8. Although the quality of ZC/AW
fits also increases, its 100SF fit-quality values remain much larger than those of the K0 fits in
the small Dσ region, and for Dσ smaller than about 2, n itself changes in a direction opposite
to that of S1! As figure 3 indicates, the estimated value of n also approaches 2/3 appreciably
slower for large Dσ than does the UN because of the failure of the AW/ZC model to provide a
good fit in the mid-frequency range. ZC fitting of just higher-frequency data (data beginning at
Dσ greater than 2 or 3) would, however, yield exponent values much closer to those shown for
S1. Incidentally, an earlier investigation of possible windowing effects with power-law models
showed that reducing the frequency range of exact power-law data with random noise added
did not appreciably affect the estimated values of the power-law exponent, n [27].

Not all σ ′(ω) data lead to a limiting slope of 2/3, however. Slopes usually increase toward
unity, may eventually exceed it, and at sufficiently high frequencies may approach a value
of two before decreasing toward zero, yielding a plateau with a limiting constant value of
σ ′(ω). When this plateau is reached, ions vibrate and ‘every hop or displacement of an ion is
recorded individually and contributes to the conductivity’ [19]. As shown in [6], either a non-
zero value of ρC(∞) or the cut-off model, involving cut-off at a small τ value of the distribution
of relaxation times associated with bulk response, can lead to a plateau. Although the plateau
value thus need not involve a finite value of ρC(∞), it is the presence of such a finite value, not
a cut-off, that leads to a slope of 2 before the plateau is reached.

It needs to be emphasized that even when the σ ′(ω) slope is greater than either (1 − β1)

or unity, fitting of such experimental data can still lead to well-determined estimates of bulk
parameters, such as β1, when appropriate fitting and analysis models are employed. Since
electrode polarization effects, often well described by the SCPE model of equation (1),
can contribute to both low- and high-frequency experimental response, it is worthwhile to
investigate its high-frequency slope contributions for the UNS model.

It has been shown that the SCPE in conjunction with a bulk model can lead to conductivity
slope values as large as 2 − γSC [28], and low-temperature material-4 experimental values as
large as 1.7 have been observed and well fitted by the SCPE [9]. Although high-frequency
NCL behaviour can also be fitted by a parallel constant-phase element (PCPE) [9, 10], most
experimental ion-hopping data involve partial or complete blocking at electrodes or boundaries
and can lead to significant low-frequency effects, as in the present figure 1. Since the PCPE
model cannot describe such low- and high-frequency effects, it is plausible to use the SCPE
even in those cases where a limited low-frequency range shows no deviation of σ ′(ω) from a
σ0 plateau.

If one is interested in σ ′(ω) data with slopes near unity, and thus of NCL character, it is
appropriate to convert such a response to ε′′ form, where constant loss, not physically allowable
for a finite region, would yield a flat horizontal line in the frequency domain. Figure 4 shows
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Figure 4. Log–log plots of the UNS-model dependence of the loss quantity ε′′ on the frequency for
several different bulk and electrode model parameter choices. Here A1 is 100 times smaller than
the original material-4 CUNS ASC parameter value; A2 is ten times smaller than A1; and τ2 is 100
times larger than the original τC1 parameter value used here in calculating all other response curves
but the one including τ2. The normalization quantity νn is 1 Hz.

such results for exact UNS data with a variety of choices of UN- and S-model parameter
values selected to demonstrate possible approaches to and deviations from NCL behaviour.
The γSC = 1.0 curve is that for a pure ideal capacitance. Notice that the top line of the figure
involves an NCL response whose actual slope varies only from about −0.02 to +0.02 over a
range of nearly six frequency decades. The result is thus a good approximation to constant loss
over many decades.

Recent work [29] demonstrates a connection between the magnitude of NCL and the
activation energy associated with independent ionic hopping. If NCL is best described as a
series effect, as discussed herein and usually associated with electrode polarization or sample
boundary effects, such a connection would still be appropriate since the same mobile charges
are involved in both long-range hopping and electrode polarization.

4. Hopping rates

In the Almond and West 1982–1983 bulk response fitting model (see the many references to it
in [7]), they identified the parameter ωAW of the present equation (3) as the thermally activated
hopping frequency of the conduction process. Although there has been some uncertainty as to
whether ωAW, ωAW = νAW, or νAW ≡ ωAW/2π should be designated the ion hopping frequency
or rate [18, 30–32], actual fitting of equation (3) to appropriate data leads to an estimate of
either ωAW or τAW = 1/ωAW, and so the numerical values of ωAW obtained from such fitting
will here be designated the hopping rate, of dimension r s−1. This usage is consistent with the
theoretically based discussion of hopping rate presented below.

The identification by Almond and West of ωAW as the hopping frequency was purely
empirical. It was considered and rejected soon after it was proposed [7], and in 1987 [33]
and 1988 [34] its identification as a jump frequency or hopping rate was also independently
termed inappropriate. Nevertheless, equation (3) and its estimation of a hopping rate have been
widely used (e.g., [14, 17, 18, 30–32, 35, 36]). Therefore, it is worthwhile to discuss both a
fitting model more appropriate than that of equation (3) and a solidly based expression for the
hopping rate that can be estimated from such models as K1 and UN.

The Nernst–Einstein equation, appropriate when the fraction of available hopping sites
occupied by mobile charges is small, may be written [6, 17, 18] as

σ0 = [γ λN(qd)2/kBT ]HRωH, (9)

9
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where N is the maximum mobile charge number density; γ is the fraction of entities of charge
q that are mobile; λ is a geometrical factor that depends on the dimensionality, D, of the space
in which mobile charges are free to move and is given by 1/(2D); d is the rms single-hop
distance for a mobile charge; kB is the Boltzmann constant; HR is the Haven ratio, � 1; and
ωH is the hopping rate, the inverse of a thermally activated hop time, τH. The Haven ratio was
used in [17] but not in [6] or [18]. It was introduced to account for possible cross-correlation
between successive charge jumps, but it is doubtful that it should be included in equation (9).
For isotropic motion of charge carriers in three dimensions, λ = 1/6. In general, λ may be
interpreted as associated with forward and backward charge motion along D orthogonal axes.

When estimated values of all the quantities in equation (9) but γ N are available, it may be
used to estimate this product. With the usual assumption of full dissociation of charges, γ = 1.
Such estimation has been carried out in [17, 18], and [30] using results from equation (3) fit
estimates of σ0 and ωAW. Their generally fairly close agreement with independent structural
estimates of N led Dutta and Ghosh [32] to state that the results in [17] verify the assumption
that ωAW is the hopping frequency, but in their version of the present equation (9) they used
ωAW/2π rather than ωH. Their claim is faulty, however, both because the arbitrary value
HR = 0.5 was used, and because of the empirical character of equation (3) itself.

Because of the generality and wide applicability of the K1 model, it is particularly plausible
to accept its microscopic-based hopping rate, ωH = 1/〈τ 〉01, as that appropriate for any
experimental data best fitted by the CK1 or CUN model. If one accepts this definition, then
when one substitutes the σ0 of equation (9) into equation (5), omitting the Haven ratio and
taking λ = 1/6, it follows that [6, 10]

T εC1∞ = [γ N(qd)2/6kBεV]. (10)

Therefore, for full dissociation when the quantity on the rhs of equation (10) and β1 are both
temperature independent, the activation energies of the thermally activated quantities T σ0 and
τC1 are equal. Such exact equality is slightly challenged, however, when, as sometimes found
experimentally, T εC1∞ is not exactly temperature independent.

Define rR ≡ τC/〈τ 〉01 as a hopping time or rate ratio. For the AW model, it can be written
as ωH/ωAW. Estimated values of rR are listed for most of the materials in table 1 for AW fits.
No values of rR for ZC fits are listed in the table since they are of the order of twice those
for the AW. Also, no rR values are included for the Na2SO4 material because its K1-model β1

values were very small, leading to very wide relaxation distributions and to consequent large
uncertainties in the estimation of 〈τ 〉01.

Figure 5 shows dependences of rR on the logarithmic Dσ variable. Exact UN data, the
same as those used in figure 3, were fitted by the ZC, AW, and K0 models and the resulting
ratios shown in the figure. The K0 ones are included for comparison with the somewhat similar
AW-fit ones. Note, however, that those involving 〈τ 〉0 are not proper rR results since 〈τ 〉0 is
not a K1 mean waiting time and, as shown in table 1, material-4 〈τ 〉0 results differ appreciably
from the corresponding 〈τ 〉01 values.

The individual material-4 experimental-data fit points shown in figure 5 lie close to the
lines for the fits of the exact synthetic data, as expected for a situation where the UNS model is
a good fit. The figure 5 results confirm that although ZC-model fits lead to very poor estimates
of the proper mean waiting time and the mean hopping rate, those for AW fits are far superior
but still mostly differ from 〈τ 〉01 values by nearly a factor of two. Thus, since 〈τ 〉01 values are
a standard part of LEVM CK1 and CK1S fit results, there is no reason to use AW hopping time
estimates in place of them.

An important aspect of hopping rate estimation is its use in calculating a value of the
mobile charge carrier concentration N of equation (9). Such a calculation has been carried out
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Figure 5. Dependence of the hopping time ratio, rR ≡ τC/〈τ 〉01, on Dσ for ZC, AW, and K0 fits of
exact UN data. The τAW/〈τ 〉0 results use the inappropriate mean hopping time 〈τ 〉0.

for material-6, PbSnF4, in [17], and its results will be compared with those for this material
in table 1. Although the authors of this work fitted their 262 K data using the AW model of
equation (3) with the SCPE of equation (1) in series, they found parameter estimates somewhat
different to those listed in table 1. For easy comparison, values of the ρ0, τAW, n, ASC, and γSC

parameters are listed below, first for the present AWS fit and then that from [17]:

3.497 × 104, 2.518 × 10−7, 0.657, 3.164 × 105, and 0.959;
3.388 × 104, 2.818 × 10−7, 0.6, 4.484 × 105, and 1.22.

The considerable differences between some of these estimates probably arose from the use
in [17] of a form of the SCPE involving the expansion of i γSC as cos(χ) + i sin(χ) with
χ = γSC [30], rather than the proper χ = πγSC/2.

In order to estimate values of N using the results of fitting the same data with two different
fitting models whose results are identified with A and B subscripts, equation (9) leads to

NA/NB = (τHA/τHB)(ρ0B/ρ0A)[γB HRB/γA HRA], (11)

where we shall initially take the quantity in brackets equal to one. If the subscript A denotes
the AW model and B the K1 or UN one, then the first term in parenthesis on the right is just rR.
The value of the resistivity ratio is usually close to unity.

On assuming that γ = 1, λ = 1/6, HR = 0.5, and ωH = 1/2.818 × 10−7 in
equation (9), the authors of [17] estimated a value of N of about 1.798 × 1022 cm−3 and
compared it with a structural value, NS, of 1.994 × 1022 cm−3. On correcting their estimate
by replacing 2.818 × 10−7 by 2.518 × 10−7 and 3.388 × 104 by 3.497 × 104, one finds that
equation (11) leads to a more proper AWS-model result of about 1.56 × 1022 cm−3, less close
to the estimated structural value. Similarly, the results in table 1 yield UNS and K1 estimates
of about 1.02 × 1022 cm−3 and 1.65 × 1022 cm−3, respectively. It is worth noting that for the
present data set where Dσ is appreciably less than unity, even though the UNS, K1S, and K0S
model fits led to comparable 100SF fit quality factors, the relative standard deviations of the ρ0

and 〈τ 〉 parameters were much larger for the K1S fit than for the others, making its listed rR

value quite uncertain.
It follows from the above results that N/NS 	 0.781, 0.511, and 0.828 for the corrected

AWS, UNS, and K1S fits, respectively. If we now change HR from 0.5 to 1, these values change
to 0.391, 0.256, and 0.414, all poor estimates. If one then assumes, for the sake of argument,
that the actual conduction in the present material is one dimensional, the factor λ in equation (9)
changes from 1/6 to 1/2, and the above results become 1.17, 0.768, and 1.24. But there seems
no physically based reason here for this assumption.
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The dissociation factor γ has been assumed to be unity for all the above calculations.
Although it could be selected to make any of the above results that are less than 1 change
to 1, one would expect γ to be temperature dependent if it were less than unity, yet the N
estimates listed in [17] are very nearly independent of temperature. Thus the introduction of a
temperature-independent γ < 1 factor seems unreasonable.

Finally, it should be noted that in [31] and [32] the ωH of equation (9) is replaced by the
ωAW of equation (3) divided by 2π , converting it to a hopping frequency. If this factor were
included, it would increase all the above results by 2π , still very poor agreement. But if one
accepts equation (9) with ωH = 1/〈τ 〉01, a result following from the stochastic microscopic
treatment of [22], there is no justification for the presence of the 2π factor in the Nernst–
Einstein equation and in the estimation of values of N from it. Thus, for the present, it is
unclear what changes would be required to allow a good estimate of N to be obtained using
the microscopic mean waiting time for 1/ωH, certainly a far more reasonable choice than
1/ωH = τAW. Analysis for data sets with larger values of Dσ and involving good UN-model
fits should help clarify the situation.

5. Some non-universal responses

The Na2SO4 polycrystalline sodium sulfate results identified by 7 and 8 in figure 1 and in
table 1 are included to illustrate data which cannot be well fitted by the UN model. This
material undergoes a phase transition at about 513 K on heating from 461 K (phase V) and
thus has a different structure at 540 K (phase I). Using equation (3), Ahmad [18] obtained
n estimates of about 0.43 in the lower-temperature phase V region and about 0.61 for the
higher-temperature region and concluded that they indicated the presence of low-dimensional
and isotropic conduction processes, respectively. Although these n values differ from the
corresponding AW ones shown in table 1, the two sets show the same trend. Note, however,
that the table 1 K0-fit estimates of β0 are nearly the same and close to 1/3 for both phases.
Further, no meaningful K1 fits were possible for either the phase-I or phase-V material because
β1 and τC1 were so highly correlated that good estimates of both of them could not be obtained.

In recent work [37, 38] involving reference glasses and nanocomposites, ones whose data
sets were limited to very small values of Dσ , such as those for the present material, it was found
that CNLS CK0 fits of the reference data sets also led to β0 estimates of exactly 1/3 or close to
that value. Taking account of the detailed structures of the materials involved, it was concluded
that charge motion was constrained to one dimension, in agreement with a theoretical prediction
of 1/3 for such motion [20, 23].

The similarity of these fitting results to the present ones strongly suggests that charge
motion in both the phase-I and the phase-V situations is one dimensional and remains so in
spite of the effects of changing phase. This conclusion is speculative, particularly because Dσ

is small for the present data sets, but if it is correct then the differences in n values for the
two Na2SO4 situations should not be interpreted for such data as implying a change in charge-
motion constraint.
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